

1

A BLOCK PROGRAMMING INTERFACE
FOR EDUCATIONAL MOBILE ROBOTS

Antonio Valério Netto1, Felipe Antunes Miranda1, Wesley Silva1, Yan Freitas1, José Tadeu Aldrigue1

1 XBot, São Carlos (SP), Brazil, valerio@xbot.com.br, felipe@xbot.com.br, wesley@xbot.com.br, tadeu@xbot.com.br

Abstract: This paper describes Curumim Program Interface,
the software used to control the robot Curumim with block
programming. Curumim is a tool for educational robotics, at
first commanded by blocks programming, which will be
described in this article, but also provides the possibility to
expand the horizon of students to other technological fields.
Using this, even those who don´t have enough knowledge
about program languages can determinate some action to the
robot. In order to write the program, it is only necessary to
click on the icon in menu and the block will be inserting in
program’s window. Then a sequence of blocks will be
created which can be executed by Curumim. It’s possible to
change any parameter of the block, delete it and insert a new
block between among others already fixed. For expert users,
there is the possibility to use C/C++ languages to program
Curumim.

Keywords: educational software, robotic education, mobile
robot, educational technology, robotics interface program.

1. INTRODUCTION

In order to promote the educational development,
teaching and learning of basics logic idea through a robot,
we developed the Curumim Kit. This kit, illustrated in
Figure 1, includes the Curumim robot, a couple of batteries
with charger, the radio for communication between the robot
and the computer, camera receiver, besides Curumim
Software and their user’s guide.

Fig. 1. Curumim Kit

Curumin’s Software is the interface between the robot
and the user. With this the user will be able to send all the
commands required to control Curumim. For this purpose,
we present two options: block programming and C/C++.

The first option of programming is formed by a set of
blocks to choice and builds an algorithm, then the robot
performs the actions planned sending instructions by radio.

Thus, when assembling a program the user will have to
think about which blocks to use and in which order "fit"
them, as well as use creativity to achieve the intended goal.

The software also has a "translator" of blocks
programming for C/C++. For each block included in your
program there is a code snippet that will build the equivalent
code program in C/C++. This will be available to the user so
it’s possible to acess and even change or rebuild it. The
purpose is take the user to a higher level, since this
functionality provides self-learning about C/C++
programming. So, it’s also possible to build more elaborate
programs for Curumim.

As seen in Figure 2, Curumim robot is composed of
some items which facilitate the execution of their tasks. A
clamp in front of the robot which works vertically up and
down, where the user can put a pen and with his positioning
down have marked the trajectory of the robot.

Fig. 2. Curumim’s details

There is a camera that provides images of the front of the
robot, with which the user can request a Figure or reading a
QRCode during the execution of each action. Curumim also
has five infrared sensor used to detect obstacles near to the
robot;

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

2

Besides, a set of three motor designed to move the robot,
with swedish wheels, allowing a composition of different
movements to the robot [1] [2] [3], which could not be made
by conventional wheels. This characterizes the Curumim
like an omnidirectional robot. Thus, the locomotion of the
robot is shown in Figure 3 below:

Fig. 3. Curumim’s locomotion

2. MODELING AND DESIGN

Order to adapt the needs of the software’s project, we
used the same procedure established by [4]. First there was
the analysis and specification of requirements, raising those
necessary to perform the requirements set to the software.
Listed are the software requirements using the UML
notation [5] (Unified Modeling Language). Also, cases of
use were developed, being one generic with the various
features of the software illustrated in Figure 4, and others
detailed for each case.

Fig. 4. General use case

During the design and development, was elaborated a
model of the software also through UML diagrams. To
gradually increase the information and detailing, the design
of such tasks was divided into two stages, the physical
design and the interface. The first was about modeling, and
information related to implementation and the choice of
programming language. The second represents information
of the interface since it needs a higher degree of detail.
Finally various tests were performed according to the needs
of software.

3. SOFTWARE ARCHITECTURE

The software architecture is divided into three different
modules: Interface, Basic Structure and Communication.
This division was proposed order for the internal structure
and communication stayed separate from the interface, not

only to facilitate code comprehension, but also interface
changes, as a development of another version to
Linux/Unix, since the only part to be reviewed would be the
interface, keeping the structure. The interface module is
accountable for communication among software and the
user. Through this module, there are the options to build the
program (blocks or C/C++) for command Curumim.

Fig. 5. Curumim’s software architecture overview

The basic structure module is responsible for managing
the information sent to the robot related to tasks defined by
the user. The communication module is the one that
performs the interaction between the robot and Curumim
Software. It’s through this module that is sent tasks to the
robot, like the software were the voice command for the
activities to be performed by the robot. In a general
overview, shown in Figure 5, the activities of the robot are
determined by the commands attributed to basic structure
module through interface module. Using the commands of
the protocol into the communication module, it sends
commands to the robot, so that “understands" and execute
the programed task.

4. BLOCK PROGRAMMING

The software is the Curumim’s environment
programming [6], where the user determines the actions for
the robot. It has a friendly interface [7] [8], and is divided
into five sections, as illustrated in Figure 6.

Fig. 6. Curumim’s software interface

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

3

1. Toolbar and Menu: The menu is formed by the
general software’s options available, since managing the
program generated by the user, as long settings, views and
help to better use of the software. Some of these options also
have the combination of keys for direct access. The toolbar
has some of the options in the menu in order to act as quick
shortcut buttons, illustrated with figures that identify them
easier.

2. Block Programming Area: mainly targeted to
beginner users who have never programmed a robot and do
not know a specific language to control the robot. There are
a number of blocks in the menu with the actions ready for
the robot, where is intuitive using each block and related
commands for controlling Curumim. Each block has an
illustration that facilitates their recognition. For every
selection of a block, it is inserted in the window next to the
programming menu.

3. Image Area: has a window that displays the image
captured by the robot’s camera. The user can request to
show it or close whenever you want, except during the
execution of the program block when their display is done
automatically by the software.

4. Area Programming C/C++: with the possibility of
building a program in C/C++ for the robot, there is the
opportunity for progress of the novice user, where you can
see the translation of the controls carried out by
programming blocks in C/C++ and then change it. In
addition, there is the option for more advanced
programming for the robot.

5. Message Area: this window displays the information
about the result of the compilation of the algorithm, as well
details of each block running by the robot. This space also
provided a feedback of actions taken.

Both menu and toolbar options are useful for block
programming, besides display the image captured by the
robot’s camera and C/C++ code.

The menu is always visible, but sometimes part of this
options may be disabled, according to each situation, while
running the software, preventing the user from making any
improper request.

The menu options are distributed in groups as shown in
Figure 7:

Fig. 7. Curumim’s software menu

File: Have options for the management of user
programs, like creating a new file, opens, save or close a
program, besides the option to leave the software Curumim;

View: have the options to show the camera’s image and
the "translation" of blocks programming for C/C++;

Configuration: settings of the communication, using this
those option to set robot’s ID and test the communication,

besides other options about the compiler and some camera’s
functions.

Execute: it has the options to compile a C/C++, since
there is an open and execute a block program or C/C++ (in
the case of a C/C++ program it’s necessary that the program
is already compiled for can be executed). It´s also possible
to pause and stop the execution program, since there is a
block program running;

Language: where the user can choose the language of the
software. Curumim’s software is available in Portuguese,
English and Spanish.

Help: has a help option, which provides information
about how to use the software and some tips about block
programming.

Fig. 8. Software’s toolbar

Among these options, those available for quick access in
the Toolbar are illustrated in Figure 8.

4.1. Configurations

The configuration window is where you set parameters
to be used by the software, especially in communication.
Have two tabs: Communication and camera, as shown in
Figure 9.

This tab has fields for filling out the appropriate serial
port and source and destination addresses to be used during
communication with the robot. Initially the user must fill out
the serial port when is connected to radio base. If the serial
port is not available, simply click the Detect Doors, the
software can identify it and the user then select it. After
setting the serial port, the user must fill in the source address
(identification of radio) and target identification (robot) and
define them as well. Then the user should be able to
complete your changes, or perform a verification of
communication with the robot through the Test button.

Fig. 9. Configuration window

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

4

In camera tab the user determines the default name for
the figure files that may be generated by the robot during the
execution of their movements. The appointment of photo
files is done by prefixing the default name given by the user
with a common numbering controlled by software. The user
can also determine the locations where such files are stored.

4.2. Block Programming Area

The area of block programming is the highlight of the
software, because it was designed especially to make the
robot control a simple situation, intuitive and independent of
any knowledge in a particular programming language.

In the figure, which aims to be identified immediately,
the blocks contained in the menu still have hints that help
users identify the name of each block, when the mouse
passed over them. The sleep block is a block that makes the
robot stand still, without performing any action for a while.

The blocks FOR Loop, WHILE Loop and Conditional IF
are conditional blocks that include other blocks, and the
evaluation of the condition of the conditional block in
question. In Figure 10 there is each block identified by
name. The condition for each conditional statement is
evaluated:

FOR loop: while the number of times determined for its
repetition is not exceeded, the blocks involved by the FOR
Loop are evaluated and executed;

WHILE loop: while the combined results of the sensors
the robot selected is true and the maximum number of times
determined for its repetition is not exceeded, the blocks
involved by the WHILE Loop are evaluated and executed;

Conditional IF: if for the selected sensors, the
combination is true, the blocks involved by the block IF are
evaluated and executed.

Fig. 10. Functions related to each block

When any blocks are insert, except the delimiters (Begin
or End), a window with the block information is opened
with default values that can be easily changed by the user.
Moreover, it has completed verification of the values for the

user do not perform any wrong filling. As an example, some
of these windows are shown below. The move straight block
window, shown in Figure 11, has the following parameters:

Fig. 11. Straight move configuration window

Direction: indicates the direction to be followed by the
robot (front or back)

Speed: indicates the speed level to be used by the robot
(1: low, 2: medium, 3: high);

Distance: defines the distance to be traveled by the
robot;

Image Resource: offers the option of use or not of use
image capture.

Fig. 12. Enable motor configuration window

The enable motor block window, illustrated in Figure 12,
has the same parameters of the move straight block, but the
control of these parameters is done individually for each of
the three robot’s wheels which each include a motor. This,
together with the choice of engines for use allows the
creation of movement for each combination of different
parameters.

However, the WHILE block window shown in Figure 13
provides an area for the construction of a logical expression.

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

5

The user can use the results of the sensors combining them
by operators NOT, AND, OR, NAND and XOR, besides
having the possibility of using parentheses.

Fig. 13. While block configuration

This expression is evaluated during the execution of the
program and if it was found to be true, the blocks that are
involved in this conditional will be executed. Otherwise,
they are ignored.

As the user is selected blocks in the program, they are
included in the blocks programming window. Furthermore,
the user can still change the values of the parameters of their
blocks through the windows already mentioned and / or
removing a block of their program.

Fig. 14. Example of a block program and translation to C/C+ +

With the exception of the insertion sequence blocks, the
other features mentioned are available in the popup menu,
differentiated according to each block: for the begin block is
"Insert a block after", to the motion blocks and conditional
are "Change the values of the parameters of the block",
"Delete the block", Insert a block before "and insert a block
after" and for end block are "Delete block" and "Insert a
block before".

By adding to the program block by block, the user
determines the options for the robot and in which order
these actions must be performed.

In Figure 14, there is an example of program blocks that
can be built into the software. This program was developed
by request of seven steps to be completed by the robot:

1. Put Down the clamp;

2. While there aren't obstacles behind the robot, ride
30cm back, with average speed. Consider this condition
only valid for up to four times its implementation;

3. Rotate 90 degrees to the left, then take a Figure;

4. If there any obstacles to the right, go ahead;

5. Repeat for 4 times the curve to the right front;

6. Wait for 2 seconds before continuing the next step;

7. Finally, put the clamp up.

Although Figure 14 doesn’t show directly the values of

changed parameters in a request, the user can check each
one sending a hint with the information.

If somebody want to change their values, its possible
delete or insert new blocks, just click the right mouse button
on the desired block and requesting the required action.

4.3. Running a block program

When the user requests the execution of the block
program, the software opens a window just below the
window programming block which indicates the actions
taken. This allows the user to follow one by one of the
actions done by the robot, as the Figure 15.

Also during the block program execution, it’s possible to
pause and then request the return to the program, or stop the
execution.

Fig. 15. Running window

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

6

4.4. Translating into C/C++ a block program

The user can request the "translation" of the program in
block C/C++. This makes learning the syntax of the
language more accessible.

Even for those who already understand the programming
logic, it’s possible to check the methods which send
commands to the robots, and change their parameters
directly. Thus, the user can include any other more complex
structures in the created algorithm. The compilation of this
program may be made in the software itself, simply by
setting one of two compilers required by the software. It is
also possible to run this program, already compiled.

However, if the user prefers to edit it in another
environment more specific of the language, just save this
program, open it in the desired environment and import their
library of robot’s commands. Figure 16 illustrates an
example an algorithm project to control Curumim with
Microsoft Visual Studio:

 Fig. 16. Programming Curumim with Microsoft® Visual Studio

Below, there is a simple example of an algorithm ready
to use with the robot, performing a rotation.

//basic input-output libraries
#include <iostream>
#include <fstream>

//Curumim’s library
#include "comcurumimvc.h"

//main program
int main(){

//creating an instance of ComCurumim

already determining the port where is
connect the radio

ComCurumim *curumim =
ComCurumim::instance("COM7");

//source address setting

curumim->setSource("06.02.03.00.01"
);

curumim->setTarget("05.0C.01.00.07"
);

//moving Curumim, in this case we use

as example the rotate function
curumim->rotate(curumim-

>getTarget(),curumim->getSource(),-45,
0);

curumim->waitStopped(curumim-
>getTarget(),curumim->getSource());

// finishing the main function
system("PAUSE");
return 0;.
}

5. FUTURE WORKS

After some opportunities where we could test the ability
of Curumim as a teaching tool, we are preparing Curumim
for make easier some hardware customizations of the robot.
Curumim proved to be useful in classes on Boolean logic,
programming concepts, algorithms, C/C++ and image
analysis.

Meanwhile, the current structure difficult a further
approach to electronic aspects of the robot. Thus, among the
possible modifications, we planned the possibility of
integrating the core of the robot - currently controlled by a
MSP480 - with other microcontrollers, such as Arduino.
This fact would increase the use of the platform as a way of
teaching embedded systems, electronics, among other topics
related to robot’s hardware.

6. CONCLUSION

Our society has experienced a growing technological
evolution, which brings the necessity for new practices of
teaching, learning and access to knowledge. Thus, with the
proposal to allow more interaction with technology tools,
enabling an increase in the retention of knowledge, currently
there is a high demand for Robotics Education [4].
However, there are few studies about how it all began [9]. In
education, the robotics is shown as a tool that enhances the
multidisciplinary approach, combining a lot of technological
topics.

With that, students have an environment where they can
handle, create, program and, by this ludic practice, develop
the logical reasoning, which is really important in many
areas of knowledge. It’s notable that robotics allied to
education proposes a greater interaction between teacher and
student, allowing both to experiment, by searching, a
constant learning.

Thinking about that, Curumim’s software was designed
to be a simple and friendly interface, in order to reach as
many users as possible. It also provides the evolution of the

A block programming interface for educational mobile robots
Antonio Valerio Netto, Felipe Antunes Miranda, Wesley Silva, Yan Freitas, José Tadeu Aldrigue

7

novice users, which in a first contact only would program
the robot through blocks and then could to start using the
language C/C++. This objective is expected because it is
believed the interest in learning programming is easily
motivated through the robot Curumim.

Is worth emphasizing that with the robot the user is not
limited to study only programming languages, but also to all
other technologies included in robotics, such as mechanics,
electronics, sensing, among others. Thus, we believe we
have developed a highly effective way of learning, dynamic
and practical.

ACKNOWLEDGMENTS

We would like to thank all development team of XBot and
other members of the company, as well as those who have
contributed to the company's activities, such as Anderson,
Mauro, Celso, Roberto, Valdir and all those who used to be
involved at some stage of Curumim’s project. We thank
CNPq and FAPESP for supporting this research too. Finally,
we also thank all customers who have chosen to know the
robot, and help in the continuous improvement of our
product.

REFERENCES

[1] Siegwart, R., Nourbakhsh, I. R., (2004). Introduction to
Autonomous Mobile Robots. The MIT Press.

[2] Nehmzow, U., (2003). Introduction to Autohnomous

Mobile Robots. 2nd Edition, Springer.

[3] Braunl, T., (2003). Embedded Robotics: Mobile Robot
Design and Applications with Embedded Systems. 1st
Edition, Springer.

[4] Francisco, S. D. (2006). Sistema Integrado de Robótica
para as áreas de Educação, Pesquisa e Entretenimento.
Cientistas Associados Desenvolvimento Tecnológico
Ltda. Relatório técnico de pesquisa apresentado à
FAPESP referente à bolsa de trabalho nível IV do
projeto PIPE-FAPESP Fase 2 (12 meses) – Ano I.

[5] Furlan, J. D. (1998). Modelagem de Objetos através da

UML: The Unified Modeling Language. Makron Books

[6] Rocha, H. V., Baranauskas M. C. C. (2000). Design e

Avaliação de Interface Humano-Computador. XII
Escola de Computação, São Paulo – SP.

[7] Konzen, I. M. G., Cruz, M. E. J. K. (2007). Kit de
Robótica Educativa: desenvolvimento de aplicação
metodológica. II Escola Regional de Licenciatura em
Computação, Universidade Federal de Santa Cruz do
Sul, Santa Cruz do Sul – RS.

[8] Pretto, N,. Costa Pinto, C., (2006). Tecnologias e novas
educações, Revista Brasileira de Educação.

[9] Melo, C. K. S., Azoubel, M. A., Padilha, A. S. P (2009).
A metodologia da robótica no ensino fundamental: o
que dizem os professores e alunos? III Simpósio
Nacional ABCiber, São Paulo.

